
MISAPOR

SCHAUMGLASSCHOTTER ALS LEICHTBAUSTOFF IM ERDBAU DES STRASSENBAUS

Agenda

FACTS & FIGURES

- ✓ Erfunden 1983 in Surava
- ✓ Über 3'300'000m³ MISAPOR im Einsatz
- ✓ Über 45'000 Objekte realisiert
- ✓ 250'000m³ jährliche Produktionskapazität
- ✓ Upcycling von 40'000to/Jahr Hohlglas aus der Schweiz

Wie Schaumglasschotter entsteht

Gesammeltes Altglas wird gereinigt, aufbereitet und zu Pulver gemahlen.

Mischung Glasmehl mit mineralischem Aktivator

Blähung im Durchlaufofen bei durchschnittlich 900°C

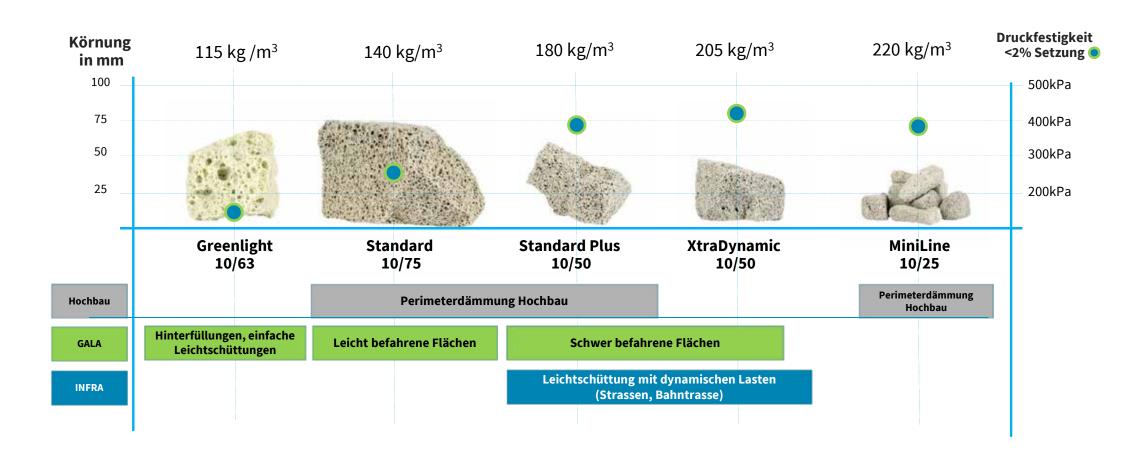
Teilung in Schottergrösse durch Abkühlung

Anwendungsbereiche MISAPOR Schaumglasschotter

Wärmedämmung im Hochbau

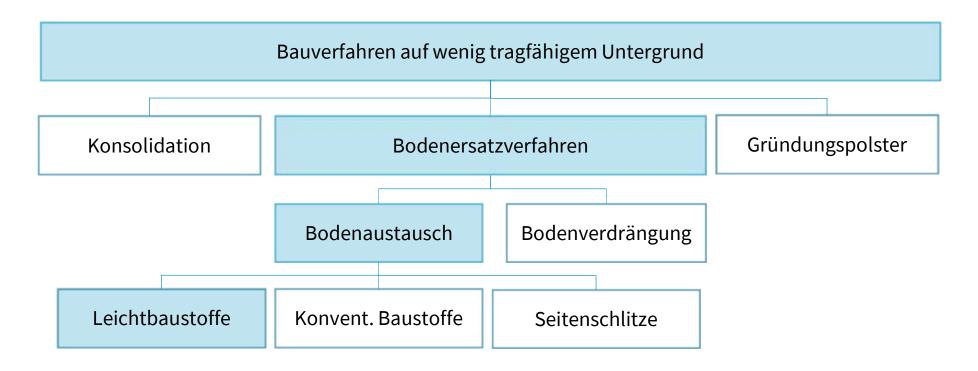
Garten- und Landschaftsbau

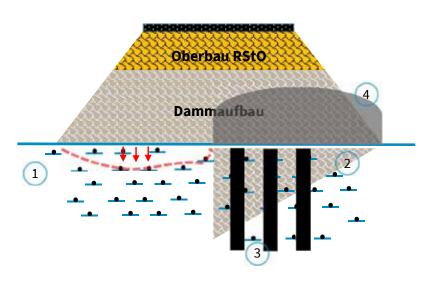
Infrastruktur- und Strassenbau



MISAPOR Dämmbeton

MISAPOR's Collection - Für jede Anwendung das richtige Produkt



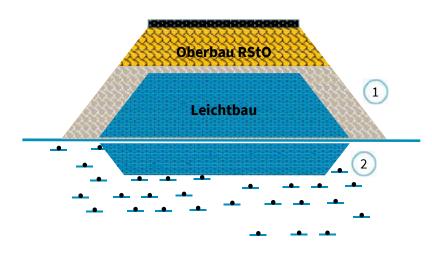

Einsatzgebiet im Erdbau des Strassenbaus (in Anlehnung an bast*)

^{*} In Anlehnung an «Bauverfahren beim Straßenbau auf wenig tragfähigem Untergrund – Bodenersatzverfahren»; Berichte der Bundesanstalt für Straßenwesen (bast), 2004

Dammaufbau beispielhaft

FRAGESTELLUNG:

Wie lassen sich Setzungen durch das GEWICHT des Bauwerks vermeiden?


- Keine Massnahme
- 2 Bodenaustauch
- Gründen (Pfählung)

4 Konsolidierung

- Setzungen
- Belagsschäden
- ➤ Aufwendige Sanierungsmassnahmen
- Handling Massenumlagerung
- Bestehender Boden problematisch (LAGA)
- Abhängig von Schichtstärken Baugrund
- + Bewährte Technik
- + Langfristige Lösung
- Zufahrt Baustelle (Baumaschinen)
- (Meist) Kostenintensives Verfahren
- + «Einfach» und kostengünstig
- Zeitfaktor
- Abhängig von Schichtstärken Baugrund
- Handling Massenumlagerung

Dammaufbau beispielhaft

- 1 Ersatz Dammbau
- + Gewichtsreduzierung Dammbau
- + Kombinierbar mit weiteren Massnahmen
- + Geringe Massenbewegungen (Leichtbau)
- Bodenaustauch + Als Bodenverbesserung geeignet (MISAPOR)
 - + Teilweiser Austausch möglich
 - + Geringe Massenbewegung (Aushub)

Ansatz:

- Verringerung des GEWICHTS des Bauwerks; Entlastung des Untergrunds
- Verbesserung des Baugrunds zur Aufnahme weiterer Aufbauschichten

Zusammenfassung Einbau von Leichtbaustoffen

Situation

- Belastung durch Oberbau
- + Belastung durch Nutzung (Verkehr)
- aber
- Boden mit geringer Tragfähigkeit
- Kompletter Bodenaustausch nicht möglich
- ⇒ Belastung > Tragfähigkeit = Setzungen

Leichtbaustoffe...

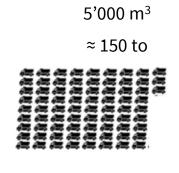
- Entlasten den Untergrund
- Verringern Langzeitsetzungen

...und ermöglichen

- Geringere Erdbewegungen
- Verzicht auf kostenintensive Gründungen
- Eine Verkürzung der Bauzeit

Leichtbaustoffe mit FGSV-Merkblatt R2

Basismaterial	23
Gewicht lose	
Gewichtet verdichtet	
Wasseraufn. / kalk. Gewicht nass	
Transportvolumen	



MISAPOR

6'500 m³

1'235 to

Blähton 8/16	EPS-Schaumstoffe
Ton	Polystorol
≈ 350 kg/m³	≈ 30 kg/m ³
$\approx 403 \text{ kg/m}^3 (1:1,15)$	≈ 30 kg/m ³
100-130 M% /≈ 920kg/m3	5 V% /≈ 35 kg/m³
≈ 50 m^3 /LKW	≈ 60 m 3 /LKW
5'750 m³	5'000 m³
≈ 2'012 to	≈ 150 to

Anzahl LKW's

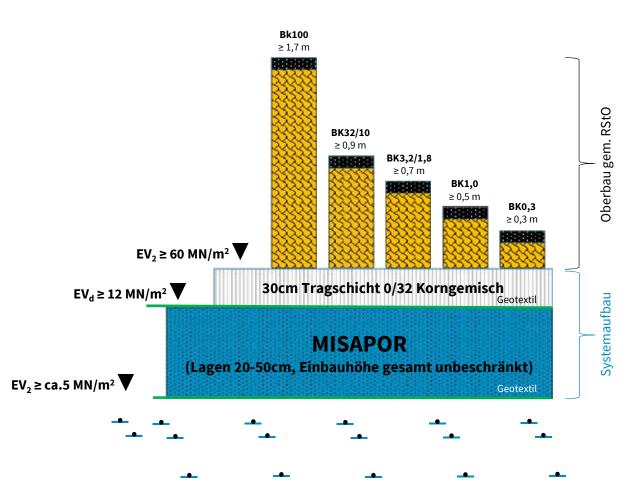
Liefermenge

Gewicht trocken

(72)

(83)

Eigenschaften des Produkts und der Schüttung

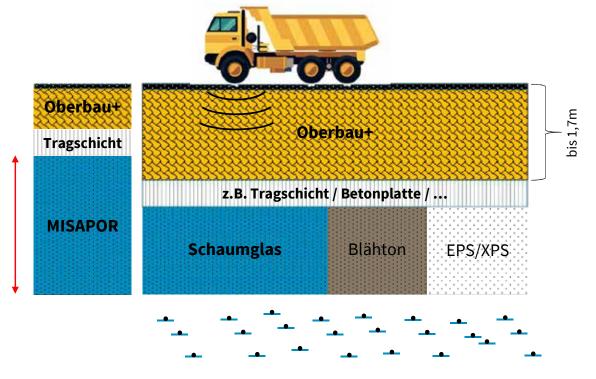

Aufbauprinzip Unterbau und Oberbau (FGSV)

Statischer Lastplattendruckversuch gemäss Prüfvorgaben FGSV-Merkblatt.

Der Systemaufbau gilt als frostsicher

Dynamischer Lastplattendruckversuch gemäss Prüfvorgaben FGSV-Merkblatt.

Mindesttragfähigkeit des Bodens für eine fachgerechte Verdichtung des MISAPOR-Schaumglasschotters.



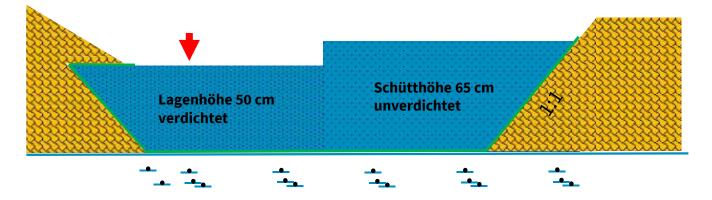
Aufbauprinzip Unterbau und Oberbau - Anmerkungen

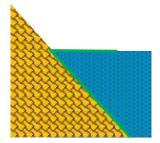
MISAPOR Schaumglasschotter hält dynamischen Belastungen Stand, so dass die Bemessung des Oberbaus unter Umständen angepasst werden kann:

- Max. 200 kN/m² / 1'000 Lastzyklen < 2,4% Setzung
- Elastisches Verhalten vernachlässigbar
- Schnelle Stabilisierung der Setzungskurve
- Hohe Lastverteilung (Schütteigenschaft)
- > Weitere Gewichtsreduzierung möglich

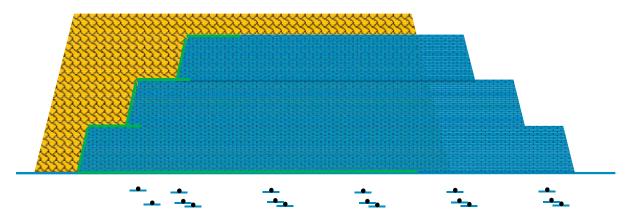
Der Oberbau ist gemäss FGSV-Aufbau jeweils so dimensioniert, dass keine (dynamischen) Belastungen auf die Leichtbaustoffe einwirken.

Einbauprinzip Schaumglasschotter (FGSV)


- 1. Planum erstellen
- 2. Stützkörper erstellen
- 3. Geotextil als Trennlage einbringen
- 4. Verteilung Schaumglasschotter
- 5. Verdichtung Schaumglasschotter (1:1,3)
- 6. Umschlag Geotextil
- ...weitere Lagen (ab Punkt 2)
- Leichter Einbau, sofort mit üblichen Baumaschinen befahrbar (Überkopfeinbau problemlos möglich)
- Hohe Einbauleistung dank konventioneller Verarbeitung



Einbauprinzip Schaumglasschotter - Ausführungsvariante


1. Aufbau gemäss FGSV-Merkblatt

- Bauweise angelehnt an Blähton-Schüttungen
- Verhinderung des Abrollens der Schüttung

Pyramiden-Form bei klassischem Dammaufbau möglich (und bei CH- und F-Projekten erfolgreich umgesetzt, da:

- Schüttwinkel 45° (ohne Stabilisierung)
- Innerer Reibungswinkel φ' 35.1°
- Kohäsion c' 31.5 kN/m2
- Verzahnungs- und Verkrallungseffekt

Was MISAPOR für den Strassenbau auszeichnet

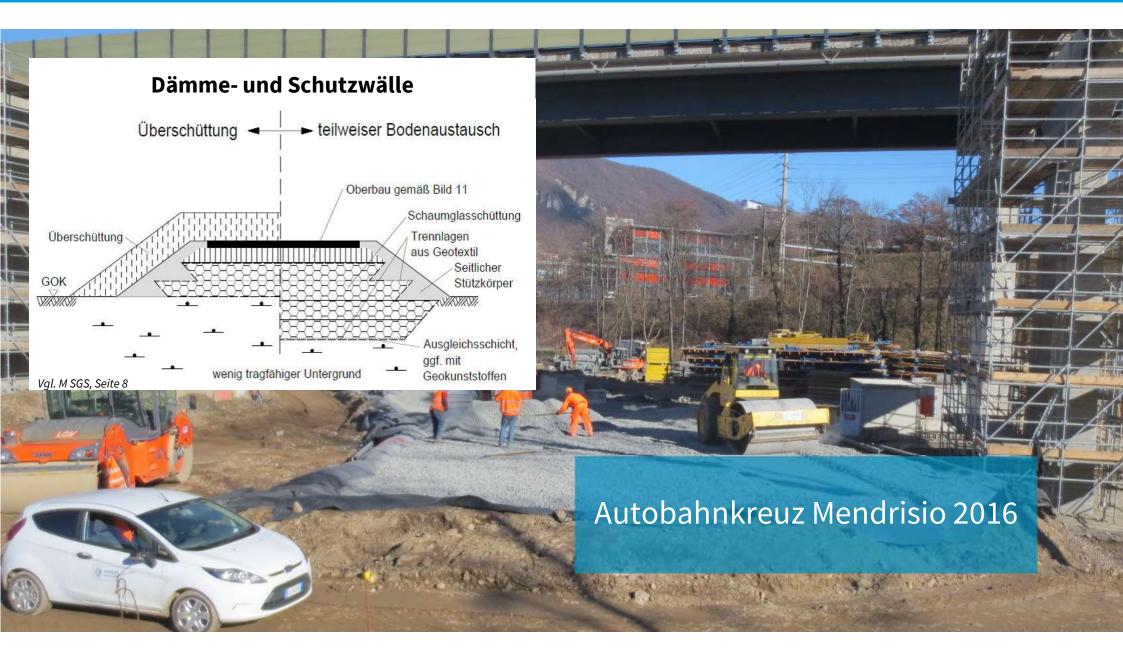
Anwendungsspezifische Versuche und Materialtests

- Überrollversuche für den Einsatz nach ZTV
- Bestimmung der Scherparameter
- Grossödometerversuche
- Verformungsverhalten unter zyklischer Belastung
- Pilotprojekt FGSV

• ...

Anwendungsspezifische Zulassungen und Prüfberichte

- Europäische technische Bewertung als Leichtbauschüttung (ETA)
- Umweltproduktdeklaration EPD (cradle-to-grave)
- CSTB
- ..

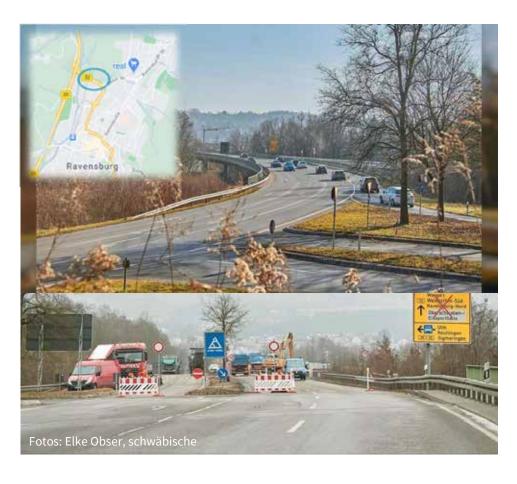


- Keine Scherparameter
- Kein Setzungs- und Kriechverhalten
- Keine zyklische Belastung
- Die technischen Werte und Angaben sind **fremdüberwacht** und garantieren planenden und ausführenden Unternehmen jederzeit höchste Materialqualität


Schaumglasschotter in der Praxis - Projektbericht

Projektbezeichnung:	Sanierung B 32 Brücke über die Bahnlinie in Ravensburg
Bauherr und Auftraggeber:	Regierungspräsidium Tübingen
Geotechnisches Büro:	HENKE UND PARTNER GMBH, Vertretung Biberach
Projektleitung:	Prof. DiplIng. Rolf Schrodi
Projektbearbeitung:	DiplIng. Christian Rauser-Härle
Unternehmer:	Josef Hebel GmbH & Co. KG, Memmingen
Ausführung:	Frühjahr bis Herbst 2020

Projekt im Gesamtkontext



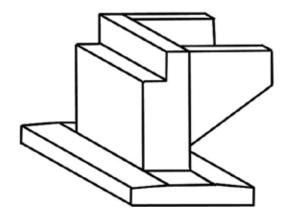
- Elektrifizierung der württembergischen Südbahn (Ulm-Friedrichshafen)
- Diverse bauliche Massnahmen auf dem gesamten Streckenabschnitt
- Gleisabsenkungen, Anhebung Brückenbauwerke etc.
- Projektvolumen: Euro 250 Mio.
- Bauzeit 2018 2021

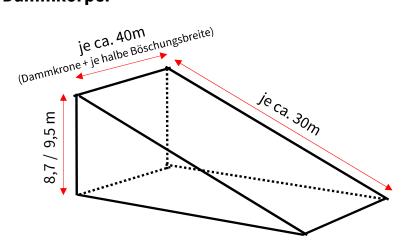
Projekt-Informationen

Projektziele / Projektauftrag

- Anhebung der Brücke zur Installation der Oberleitungen im Zuge der Elektrifizierung der Südbahn
- Nachhaltige Sanierung zur Vermeidung weiterer Setzungen

Informationen zur Brücke

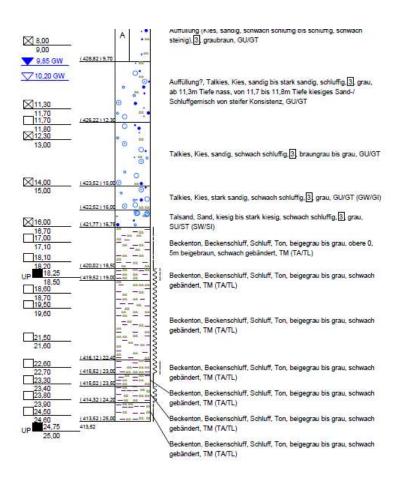

- Baujahr 1987 1989
- Spannweite ca. 36 cm
- Ausbildung als Einfeldträger aus jeweils zweistegigen Plattenbalkenquerschnitten


Konstruktionsweise und Kennzahlen

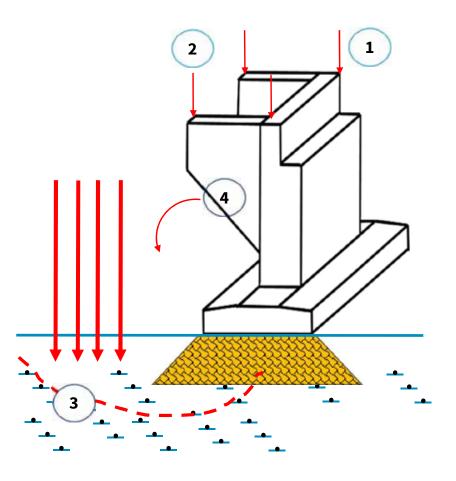
Brückenwiderlager

- Flachgegründete Widerlager
- Bodenaustausch der jungen Talfüllungen bei Gründungssohlen mit Kies-Sand-Gemisch
- Nachverdichtung mittels Rütteldruckverdichtung
- Charakteristische Sohlpressung = 240 kN/m²

Dammkörper

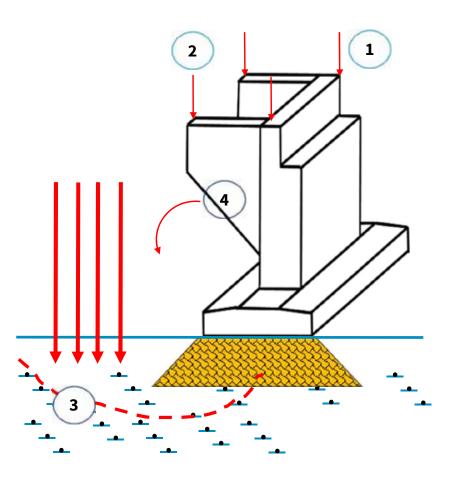


- Vorbelastung des Bodens (6 Monate, komplette Dammhöhe)
- Keine zusätzlichen Bodenverbesserungsmassnahmen
- Wichte Dammschüttmaterial γ = 22 kN/m³


Untergrund Damm / Widerlager (vereinfachte Darstellung)

- Tallehm, Talkies und Talsandschicht
- Beckentone und Beckenschluffe
- Endtiefe der Beckensedimente > 65 Meter
- Hoher Wassergehalt
- Erhebliche und langanhaltende Setzungen zu erwarten
- Kriechsetzungen kommen nicht zur Ruhe (> Jahr 2200)

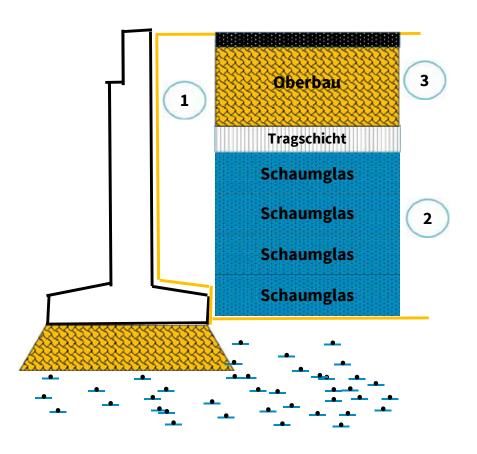
IST-Situation Widerlager West (Entwicklung 1989 - 2019)


- 1 Setzungen von 23-29 cm auf der Widerlagerfront
- 2 Setzungen von **40-43 cm** an den Flügelenden
- 3 Bildung einer **Setzungsgrube** durch Dammbelastung
- 4 Verkippung Widerlager von 11,5-11,8 cm

Prognose für die nächsten 100 Jahre:
- Setzungen 15-25 cm
- Verkippung Träger 17-20 cm

IST-Situation Widerlager West (Entwicklung 1989 - 2019)

- 1 Setzungen von 13-16 cm auf der Widerlagerfront
- 2 Setzungen von **17-21 cm** an den Flügelenden
- 3 Bildung einer **Setzungsgrube** durch Dammbelastung
- 4 Verkippung Widerlager von 3,5-4,5 cm

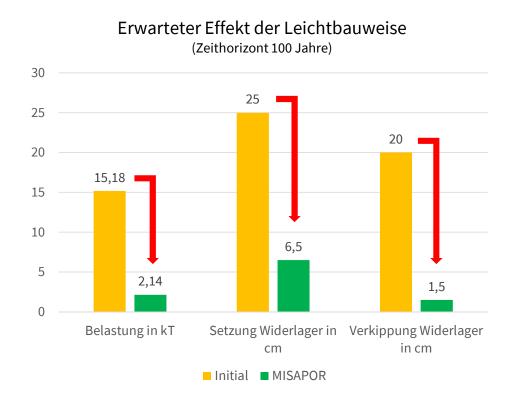

- Die Setzungen sind primär auf die DAMMWICHTE zurückzuführen
- Durch eine Verringerung der Bodenlast wird die zu erwartende Setzung reduziert

Lösung: Entlastung des Bodens durch Gewichtsreduktion

(vgl. FGSV M SGS S. 8)

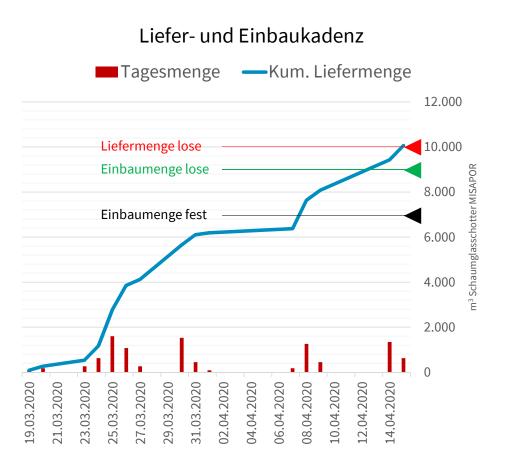
- 1 Ausbau von 7 bzw. 6,5 m Dammaterial
- 2 Lagenweiser Einbau von MISAPOR Schaumglasschotter
- 3 Tragschicht und Oberbau gemäss RStO

Wegführen von 6'900m³ Bodenmaterial **745** LkW à 20to


Ersatz durch 10'000m³ MISAPOR (6'900m³ Festmaterial)

112 LkW à 90m³

Resultat: Reduktion der Bodenbelastung verzögert Langzeitsetzungen


- Reduktion der Auflast um 85% (-13,04 kT)
- Reduzierung Setzungen Widerlager (-18 cm)
- Minimierung Vergrösserung Senkungsgrube
- Reduzierung Verkippung der Widerlager (-18,5 cm)

- Der einmalige Bodenaustausch minimiert weitere Sanierungskosten
- Die Brückenerhöhung fällt mit entsprechender Kalkulation deutlich niedriger aus
- ➤ Eine kostenintensive Sanierung des Baugrunds unter den Widerlagern (z.B. Injektion) kann vermieden werden

Einbauleistung und Materialverbrauch

- 10'000 m³ in knapp 1 Monat verarbeitet
- Geringe Massenbewegung trotz grosser Volumina
- 112 LKW-Lieferungen für komplette Menge
- Minimaler «Materialverlust» durch Handling

Einbaumenge fest: 6'900 m3

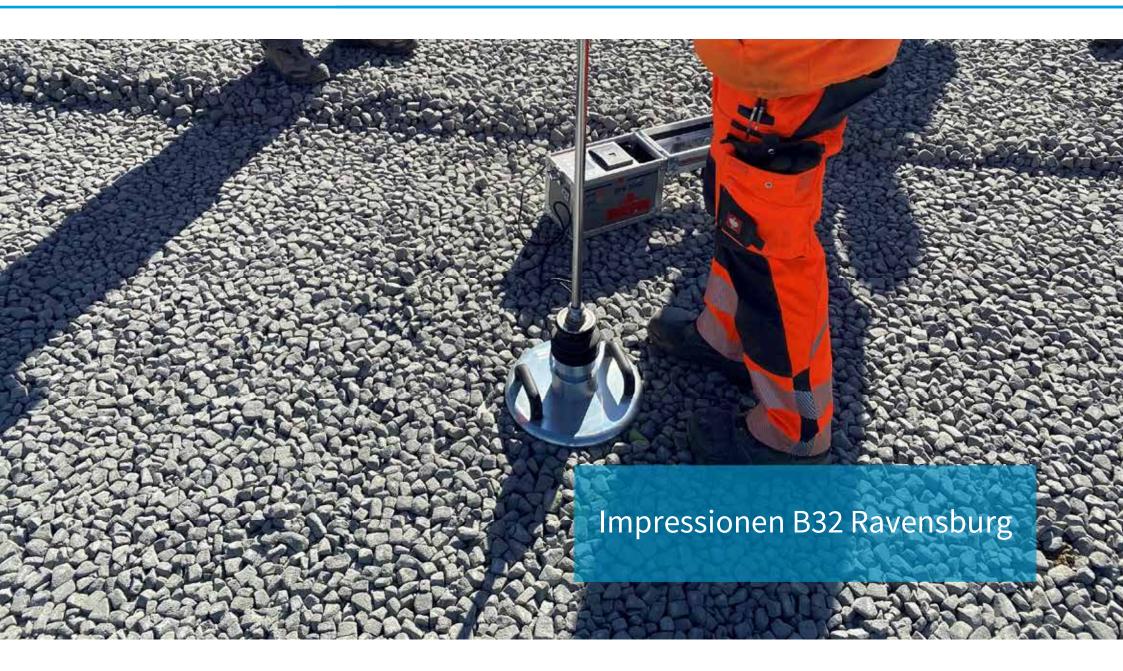
Einbaumenge lose: 9'522 m3

Liefermenge lose: 10'080 m3

> Verdichtungsfaktor: ca. 1,38

Logistik und Baustelle: ca. 1,08

➤ Materialfaktor: ca. 1,46





Friedrich Kicherer GmbH & Co. KG Ludwig-Lutz-Str. 4 73479 Ellwangen (Jagst) www.kicherer.de

Beständig in Bewegung